DEPARTMENT OF CHEMISTRY

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 8

Mass spectrometry for biophysics and structural biology

Professor Justin Benesch, 23rd November 2016

Levels of protein structure

Mass spectrometry can inform on all levels of protein structure

What do we want to know?

- Structure
 - Stoichiometry, connectivity, 3D topology, conformations, atomic coordinates
- Thermodynamics
 - Interface and interaction strengths, stability
- Kinetics
 - Rate constants, activation energies

Two strategies - native or labelling

Labelling technologies with MS

- Label protein, and use MS to localise the individual labels
- Can interrogate the 'global' and 'local' levels: i.e. protein or peptide level
- Peptide level accessed by enzymolysis of protein, and further interrogation with tandem MS
- Labels reveal solvent accessibility and connectivity
- Provide means of probing protein structure and dynamic fluctuations

Cross-linking mass spectrometry

- Cross-linker forms covalent bonds between amino acids with appropriate functionality
- Peptide masses (and fragments) are interrogated to localise cross-linker
- Intra- and inter-protein cross-links can be formed
- Cross-links can be used to determine connectivity, and as a spatial restraint for modelling protein structures
- Problems centre on decreased detection efficiency of cross-linked peptides, kinetic effects, and interpretation of observed links

Oxidative foot-printing

- · Solvent accessible amino acid side chains of the protein are oxidised
- Peptide masses (and fragments) are interrogated to localise oxidation sites
- Comparing data from proteins in complex and in isolation allows the determination of interface sites
- Problems centre on data analysis and differential intrinsic reactivity

Hydrogen/deuterium exchange

- Monitor the rate at which protein hydrogens are replaced by deuteriums (or vice versa)
- Three types of hydrogen in proteins, only backbone amide hydrogens exchange at measurable rate
- Exchange can be (effectively) quenched by dropping pH to ~2.5, and temperature to 0°C
- Exchange rates reveal solvent accessibility

• Problems centre on localisation, and interpretation of solvent accessibility

Labelling technology - Example

- Hydrogen/deuterium exchange of oligomeric 'molecular chaperone' protein
- Side-chains at interfaces exchange relatively rapidly, suggesting a labile oligomer

'Soft' Ionisation

- From molecules in solution to ions in vacuum
- Established ionisation techniques resulted in covalent fragmentation of molecules
- Soft ionisation techniques allow ionisation of large ions without their fragmentation
- Current 'mass record' is >100 MDa!

Nobel Prize in Chemistry 2002

"for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules"

John B. Fenn 1/4 of the prize USA

Koichi Tanaka 1/4 of the prize Japan

ESI mass spectrum of single protein

Electrospray mass spectra show multiple 'charge states' for a 10 kDa protein

Conformational effects on ESI spectra

 Folded state of protein governs its surface area, and number of sites available for protonation

Maintaining noncovalent interactions

- Transfer multi-subunit protein assembly from solution into gas phase
- Requires control of ionisation conditions, and ion transmission

Nano-electrospray ionisation (nESI)

Collisional focussing

 Both axial and radial components of the ions' velocity can be dampened by collisions with background gas

nESI mass spectrum

Mass accuracy

- Additional mass due to adducted solvent molecules and buffer ions
- Number of adducts inversely related to activation

Membrane protein assemblies are also tractable

- Sample transferred into vacuum within detergent micelle
- Activation within the mass spectrometer removes detergent to leave "naked" protein assembly

Benefits of nESI

- Lower sample amounts (flow rate approx 10nL/min, vs 5 µL/min in ESI)
- Can use aqueous buffers and ambient temperatures
- Narrower charge states due to fewer adduction
- Less dissociation of oligomer
- Symmetrical charge state distribution indicative of a single conformation
- Fewer non-specific aggregates

Non-specific associations during ESI

- Probability of there being >1 analyte molecules in 'final' ESI droplet
- Most droplets are empty, occupancy increases with concentration
- Decreased initial droplet size in nESI reduces prevalence of non-specific aggregates

Intact membrane protein machines - Example

Determining binding affinities - Example

Effects of activation in the gas phase

- Activating conditions lead to high quality mass spectra
- Same activation can lead to
 - collapse (i.e. smaller CCS)
 - then unfolding (i.e. larger CCS)

Benesch, J Am Soc Mass Spectrom (2009), 20, 341-8

Collision induced dissociation of protein assemblies

- Dissociation is asymmetric with respect to mass
- · Unfolded, highly charged monomers are removed sequentially

Deconvoluting heterogeneity with CID

- Peak separation is aided by the charge reduction afforded by CID
- Predictable nature of CID allows back calculation of oligomeric distribution

Quantifying stoichiometries

- MS versus size-exclusion chromatography with multi-angle light scattering
- For proteins of similar composition, abundances match solution values

Free energies from MS measurements - Example

Hilton et al, Proc Roy Soc B (2013), 368, 20110405

Protein dynamics

- Proteins are not static structures, but rather undergo fluctuations both at and before equilibrium
- Such 'protein dynamics' are crucial to their function in the cell
- These dynamics can span a wide range of amplitudes and timescales

Quaternary dynamics - Example

Quaternary dynamics - Example

- Exchange proceeds via the movement of dimeric units
- Incorporation is via sequential incorporation of dimers into oligomers
- · Hetero-assembly leads to a wide variety of possible oligomers

Preservation of structure

 It is clear stoichiometry is preserved in the mass spectrometer, but can we probe native structure?

IM-MS spectrum

Obtaining an experimental CCS

- Every feature resolved in m/z has an associated drift time distribution
- Drift time is converted into CCS either directly or via calibration

CCS values from protein structures

- Can approximate CCS as rotationally averaged projected area
- Determine 'theoretical' CCSs from solved protein structures

CCS comparison

- Excellent correlation between theoretical and measured values for globular proteins
- Discrepancy is due to simplicity of 'projection approximation'
- Correlation motivates use of IM measurements in assessing model structures

Using IM-MS to measure conformers - Example

- P-glycoprotein is an low specificity efflux pump which impairs drug delivery
- IM-MS allows the detection of different conformations - outward, inward open, inward closed (left to right)
- Small molecules affect conformational equilibrium

Marcoux et al, Proc Natl Acad Sci USA (2013), 110, 9704-9

Using IM-MS to filter structures - Example

- Polydisperse oligomeric protein exists in three different stoichiometries
- Based on comparison with homologous proteins likely structures are polyhedral
- Different polyhedral models can be compared to the IMS measurements

Using IM-MS to filter structures - Example

- Compare random rotations of models to TEM class averages
- Lower score is better fit
- Projected area from TEM is conceptually similar to CCS area from IM
- Combination of techniques reveals ensemble structures that

MS across wide range of time and length scales

In-house software to enable quantification

UniDec.chem.ox.ac.uk

DynamiXL

IMPACT.chem.ox.ac.uk

EMnIM.chem.ox.ac.uk

BioBOx

DEPARTMENT OF CHEMISTRY

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 8

Mass spectrometry for biophysics and structural biology

Professor Justin Benesch, 23rd November 2016